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Abstract
A second-order supersymmetric approach is taken to the system describing
motion of a quantum particle in a potential endowed with position-dependent
effective mass. It is shown that the intertwining relations between second-
order partner Hamiltonians may be exploited to obtain a simple shape-invariant
condition. Indeed, a novel relation between potential and mass functions is
derived, which leads to a class of exactly solvable models. As an illustration
of our procedure, two examples are given for which one obtains whole spectra
algebraically. Both shape-invariant potentials exhibit harmonic-oscillator-like
or singular-oscillator-like spectra depending on the values of the shape-invariant
parameter.

PACS numbers: 03.65.Ca, 03.65.Ge

1. Introduction

The effective mass (EM) Schrödinger equation with position-dependent mass is a very useful
model in many applied branches of modern physics, e.g. semiconductors [1], quantum dots [2]
and 3He clusters [3]. In these cases, the envelope wavefunction actually provides a macroscopic
description of the motion of carrier electrons with position-dependent (or equivalently material-
composition-dependent) mass. Recent interest in this field [4–17] stems from extraordinary
development of nanostructure technology. This sophisticated technology of semiconductor
growth, like molecular beam epitaxy technique, makes production of ultrathin (nonuniform)
semiconductor specimen a reality nowadays. Consequently, the study of such EM equation
becomes relevant for deeper understanding on the non-trivial quantum effects observed in those
nanostructures. Another area, where this equation has extensive use, is the study of quantum
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many-body systems in solids. For instance, the computational limitation of the Green’s
function quantum Monte Carlo method is removed by using the so-called pseudopotentials.
The EM equation appears in the process when one attempts to replace the nonlocal (and thus
disadvantageous) angular-momentum projection operator of the pseudopotentials [18].

On the other hand, supersymmetric (SUSY) approach [19] has been proved as a powerful
tool in quantum mechanics identifying the isospectral partners in bosonic and fermionic
sectors, and thereby generating a hierarchy of solvable Hamiltonians [20]. In the standard
SUSY approach for EM Hamiltonians the ladder operators are taken as first-order derivative
operators similar to constant-mass (CM) case, but now they depend on both superpotential
and mass function. As a result, one obtains two partner EM potentials with the same effective
mass sharing identical spectra up to the zero mode of supercharge. In the literature, a
generalization of standard SUSY known as higher derivative SUSY (HSUSY) or N -fold
SUSY finds a good usage for CM models [21–31]. This method keeps the basic superalgebra
and differs from standard first-order SUSY in that the supercharges are represented as N th
order (N > 1) differential operators. Recently, this higher order approach has been extended
for EM Hamiltonian [16]. When one is interested in the solvability of the Hamiltonian, shape
invariance (SI) is an important criterion [32], because in this case one can obtain full spectra
by successive application of raising operator. For instance, some classes of SI Hamiltonian
have been discovered recently through first-order SUSY formalism [6, 12, 13].

Our purpose in the present work is to extend the concept of SI to second-order SUSY
(SSUSY) in the effective mass framework. This type of extension has been done very recently
[26] for CM case. We have derived a new relation between the potential and mass functions,
which gives an exactly solvable (ES) model satisfying a simple SI condition. Two specific
examples are given, one is hyperbolic and other is algebraic. Both these Hamiltonians are
new ES models, because their wavefunctions and energy eigenvalues can be obtained by
purely algebraic means. For certain values of the characterizing parameter these potentials
acquire an inverse-square singularity at the centre. Such type of singular potentials has
important applications in various fields, e.g., molecular and high energy nuclear physics [33].
In the constant-mass limit both of these reduce to well-known harmonic oscillator or singular
oscillator depending on the values of the SI parameter.

In section 2, we set up first-order SUSY for EM models. Section 3 is devoted to SSUSY.
After getting compact expressions for intertwined Hamiltonians in terms of superpotentials
and mass function, we obtain the solution of zero-mode equation of supercharges. In section 4,
we study in detail the connection of the second-order scheme with the standard one. Section 5
contains the main result concerning SI for SSUSY scheme. A new relation between potential
and mass function leading to SI model is derived. Two examples satisfying such relation are
provided. Finally, section 6 contains the concluding remarks.

2. First-order SUSY and EM models

The well-known superalgebra defined by the super Hamiltonian Hs and the supercharges
Q,Q† is

Hs = {Q,Q†}, Q2 = Q†2 = [Q,Hs] = [Q†,Hs] = 0, (1)

where the symbol ‘†’ denotes the usual Hermitian conjugation. The supercharges are
represented in one-dimensional quantum mechanics by the following 2 × 2 matrices:

Q =
(

0 0
A 0

)
, Q† =

(
0 A†

0 0

)
. (2)
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Consequently, the super Hamiltonian Hs is diagonalized as

Hs =
(

H+ 0
0 H−

)
, H+ = A†A, H− = AA†. (3)

In the standard SUSY approach to EM models, the ladder operators A,A† are first-order
differential operators3

A = 1√
m(x)

∂ + W(x), A† = − 1√
m(x)

∂ + W(x) −
[

1√
m(x)

]′
,

(
∂ ≡ d

dx

)
(4)

where W(x) is the EM superpotential and the prime denotes derivative with respect to x. Note
that we have omitted the factor h̄2 by defining the atomic units such that h̄2 = 2. Denoting
H± as

H± = −∂

(
1

m(x)
∂

)
+ V±(x), (5)

the realization (4) straightforwardly expresses the Schrödinger EM potentials in terms of mass
and EM superpotential:

V+(x) = W 2 −
[

W(x)√
m(x)

]′
, V−(x) = V+(x) + 2

W ′(x)√
m(x)

− 1√
m(x)

[
1√

m(x)

]′′
. (6)

The main feature of above construction is the intertwining relations between the bosonic
and fermionic parts, which plays a crucial role in SUSY theory

AH+ = H−A, H+A
† = A†H−. (7)

The vacuum states may be characterized as

Aψ+
0 (x) = 0 or A†ψ−

0 (x) = 0, (8)

where ψ±
n , n = 0, 1, . . . , denote the bound state wavefunctions for the Schrödinger

Hamiltonian H±. Let us point out that physically the mass function m(x) is positive definite
and finite everywhere in the domain of definition of the EM Schrödinger equation. Now, the
existence of a zero mode will depend on the asymptotic nature of the superpotential W(x) and
mass function m(x). The ground state wavefunctions may be computed from equation (8):

ψ+
0 (x) ∝ exp

[
−

∫ x √
m(τ)W(τ) dτ

]
, ψ−

0 (x) ∝
√

m(x) exp

[∫ x √
m(τ)W(τ) dτ

]
.

(9)

The existence of the vacuum states is ensured if and only if the integrals satisfy the following
asymptotic condition:∫ x √

m(τ)W(τ) dτ −→
x→±∞

+ ∞( or − ∞).

Clearly, both of the above conditions cannot exist simultaneously and so at most one of the
zero modes (9) will be annihilated in which case SUSY is unbroken (or exact). On the other
hand, if neither of the zero modes exist then SUSY is called spontaneously broken. In this
context, it should be kept in mind that this argument fails for periodic Hamiltonians [34]
because in that case one usually considers Bloch solutions and so the square-integrability
criterion disappears [35–37]. In fact, the question of existence of zero modes are related with
the specified functional space on which a quantum system is to be considered [30]. However,
in this treatise we will not consider periodic models. Thus, for the systems defined on linear

3 The representation of ladder operators is not unique for EM models, for other variants see [12, 13].
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space it must be safely concluded that two zero modes cannot exist simultaneously in the
first-order SUSY formalism. In the next section, we will show that this is not the case for the
SSUSY scheme.

For definiteness, let us suppose that the bosonic sector (H+) is fully known and possesses
normalizable zero-energy state. Thus, if either ψ+

0 or W(x) is known, the other can be obtained
exactly by formulae (9). Now, one can extract full knowledge about the fermionic sector (H−)

by the use of the intertwining relations (7):√
E+

n+1 ψ−
n (x) = Aψ+

n+1(x),
√

E−
n ψ+

n+1(x) = A†ψ−
n (x); E−

n = E+
n+1, E+

0 = 0,

(10)

for n = 0, 1, 2 . . . .

Let us now consider the EM eigenvalue equation

HEM(x)ψ(x) ≡ [TEM(x) + VEM(x)]ψ(x) = εψ(x). (11)

The first step to study this equation is certainly to choose a suitable form of the Hermitian
kinetic energy operator TEM(x). There is an intrinsic ambiguity in selecting such form as
this class of physical problems are suffered from non-commutativity of momentum operator
p = −i

√
2∂ and the effective mass operator m(x). Several forms had been proposed in the

literature for TEM(x), and considerable efforts were made to remove the non-uniqueness of the
kinetic energy operator [38–43]. But still the problem of ambiguity remains an open question
in this field. However, one may rely on almost general representation suggested in [39]

TEM(x) = 1
4 (mapmbpmc + mcpmbpma), a + b + c = −1. (12)

The parameters a, b, c in the above equation are usually called ‘ordering parameters’. Most
of the present authors prefer to start from (12) as this representation includes many special
forms used in different context. For instance, the authors in [6] considered following kinetic
energy operator to apply first-order SUSY:

TEM(x) = 1

2
p

(
1

m

)
p,

which was first proposed by BenDaniel and Duke [38], and is contained in the general
representation (12) for the special choice a = c = 0, b = −1. In this connection, we would
like to mention an interesting work [12] where the authors have proposed a new representation
of first-order SUSY ladder operators including ambiguity parameters of the kinetic energy
operator (12) and have obtained a substantial generalization over the result of [6]. It is now
well-known that [13, 14] the representation of ladder operators can be made free from the
ambiguity parameters (see equation (4)) at the cost of constraining the local potential VEM(x)

in equation (11) with a pseudopotential term ρ(m) thereby considering the so-called effective
potential energy ṼEM(x). For the two-parametric representation (12) of the kinetic energy
operator this pseudopotential term is given by

ρ(m) = 1 + b

2

m′′

m2
− η

m′2

m3
, η = 1 + b + a(a + b + 1), (13)

where we have absorbed the parameter c using the constraint a + b + c = −1. In what follows,
we will consider the following general EM Schrödinger equation:

HEM(x)ψ(x) ≡
[
−∂

(
1

m(x)
∂

)
+ ṼEM(x)

]
ψ(x) = εψ(x), ṼEM(x) = VEM(x) + ρ(m).

(14)
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In above equation, VEM(x) represents the local potential strength and the pseudopotential ρ(m)

is given by (13), the latter depends on the ordering parameters a, b. We will assume that a, b

are real. The EM Hamiltonian (14) may then be identified with bosonic partner Hamiltonian
H+ in (5) as

V+(x) = ṼEM(x) − ε, ε � E+
0 = 0, (15)

by assigning VEM(x) = V+(x) − ρ(m) + ε. The quantity ε is often termed as factorization
energy in the SUSY procedure [44].

3. Second-order SUSY and zero-mode equation

We will now replace the intertwining operators A,A† in equations (1)–(4) by the following
second-order operators:

A = 1

m
∂2 + W(x)∂ + c(x), A† = 1

m
∂2 −

[
W(x) + 2

m′

m2

]
∂ + [c(x) − W ′

m(x)], (16)

in which we have used the abbreviation

Wm(x) = W(x) +
m′(x)

m2(x)
. (17)

In the following, we will use the terminology ‘superpotential’ for the function Wm(x). Clearly,
the super Hamiltonian Hs given by (1)–(2) is now a fourth-order differential operator, and it
will be physically meaningful if it can be expressed as a quadratic polynomial in the usual EM
Schrödinger Hamiltonians. Thus, we will introduce

hs =
(

h+ 0
0 h−

)
, h± = −∂

(
1

m
∂

)
+ v±(x). (18)

Our task is to determine the following matrix identity:

Hs = h2
s + l1hs + l2I2, (19)

where l1, l2 are arbitrary fixed real numbers. After some involved but straightforward steps
one may express v±(x) in terms of c(x), the superpotential Wm(x) and the mass function
m(x):

v±(x) =
(

1

2
∓ 1

)
W ′

m ∓ m′

2m
Wm +

mW2
m

2
− c(x) − l1

2
, (20)

where the function c(x) is given by

c(x) = W ′
m

2
+

mW2
m

4
− W ′′

m

2mWm

+
1

m

(
W ′

m

2Wm

)2

+
3m′2

4m3
− m′′

2m2
− 1

m

(
K3

2Wm

)2

. (21)

In above equations, the quantity K3 is taken, without loss of generality, as

K3 = +
√

l2
1 − 4l2. (22)

It should be emphasized that the quantity K3 may be purely real or purely imaginary according
as l2

1 � 4l2 or l2
1 < 4l2. It is that constant which plays the role of determining reducible or

irreducible SSUSY [22]. In the next section, we will show that for Hermitian quantum
mechanics SSUSY scheme could be reduced to first-order SUSY for real K3 only.

Note that the EM Hamiltonian hs always commutes with super Hamiltonian Hs due to
relation (19), and hence both have simultaneous eigenstates. Thus, the intertwining relation
(7) implies that Schrödinger Hamiltonian (18) is doubly degenerated (up to zero modes of
the supercharges), and wavefunctions are connected according to (10), where E±

n now denote
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eigenvalues of h±. It should be mentioned that the above expressions for v± and c(x) satisfy
additional intertwining relations between EM Hamiltonians h±:

Ah+ = h−A, h+A† = A†h−. (23)

This relation is important not only because of its elegant description, but also one can start
from the requirement (23), and may obtain expressions (20) and (21).

We will now show that zero modes of both operators (16) may exist simultaneously, in
contrast to the standard first-order SUSY. To understand this let us write the normalizable
solutions of zero-mode equations (8) for supercharges. Note that equation (8) becomes a
second-order differential equation with the replacement of A,A† by A,A† of (16). These
equations may be brought to the form similar to CM Schrödinger equation

−φ′′(x) +

[(
W ′

m + K3

2Wm

)2

+

(
W ′

m + K3

2Wm

)′]
φ(x) = 0, (24)

by the transformations

ψ±
0 (x) =

√
m(x)φ(x) exp

([
∓1

2

∫ x

m(τ)Wm(τ) dτ

])
. (25)

The normalizability of ψ±
0 clearly depends on functional forms of both superpotential Wm(x)

and mass function m(x). To illustrate it, consider that φ(x) in (24) is identified with
normalizable ground state wavefunction of a known solvable CM Hamiltonian by suitably
choosing the superpotentialWm(x). Then the prefactor φ(x) of ψ±

0 in (25) is well behaved, and
hence both ψ±

0 will be normalizable if m(x) is also well behaved and the integral
∫ x

mWm dτ

is finite. Thus, in this instance both operators (16) have normalizable zero modes, as was the
situation for CM models. The explicit solutions for zero-mode states of both supercharges
may be written as follows:

ψ±
0,j (x) ∝

√
mWm exp

([
∓

∫ x

Fj (τ ) dτ

])
, Fj (x) = mW2

m + (−1)jK3

2Wm

, j = 1, 2.

(26)

Note that for K3 = 0, F1(x) ≡ F2(x) and so in that case both operators may have at most
one zero mode. It should be mentioned that both of the zero modes are also formal eigenstates
of Schrödinger Hamiltonians h± for real K3 only:

h±ψ±
0,j = ηjψ

±
0,j , ηj = − l1 + (−1)jK3

2
. (27)

Before concluding the section, it may be pointed out that the quantum systems built upon
N th order representation of ladder operators were categorized as type A N -fold SUSY (see
for details [16, 30]). Hence, it is not difficult to show that the systems investigated in this
paper are generically special cases of type A two-fold SUSY. Furthermore in [30] it was shown
systematically that the zero modes of one higher order supercharge can admit both physical
and non-physical states, the latter may be used as a good transformation function to develop
new solvable system [37].

4. Relation with standard SUSY

In the previous section, we have derived the expressions for second-order SUSY partner
potentials v±. In this section, we want to investigate whether v± may be expressed through
standard SUSY formalism. That is, to say whether there exist superpotentials W1,W2 in terms
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of which v± may be brought to the first-order form given by (6). To proceed systematically,
let us write h± as

h− ≡ h
(1)
− = A1A

†
1 + K1, h+ ≡ h(2)

+ = A
†
2A2 + K2, Aj = 1√

m
∂ + Wj, (28)

where Aj are first-order EM ladder operators and K1,K2 are suitable constants to be
determined. In this section, we will use the notations h− ≡ h

(1)
− and h+ ≡ h

(2)
+ interchangeably

for 2-SUSY partners h±. Let us consider that K3 is purely real. Assuming for definiteness
K3 > 0, two types of solutions for W1,W2 are possible.

(a) Type I: K1 = −K3+l1
2 ,K2 = K3−l1

2
The first-order superpotentials are given by

W1,2 =
[
Wm

√
m

2
+

1

2

(
1√
m

)′]
±

[
W ′

m + K3

2Wm

√
m

− 1

2

(
1√
m

)′]
. (29)

The relation between second-order operators A,A† and the first-order operators A1, A2

in this case is

A†A = (
A

†
2A2

)(
A

†
2A2 + K3

)
, AA† = (

A1A
†
1

)(
A1A

†
1 − K3

)
. (30)

(b) Type II: K2 = K1 = −K3+l1
2

W1,2 =
[
Wm

√
m

2
+

1

2

(
1√
m

)′
+

K3

2Wm

√
m

]
±

[
W ′

m

2Wm

√
m

− 1

2

(
1√
m

)′]
. (31)

The operator relation (30) becomes

A†A = (
A

†
2A2

)(
A

†
2A2 − K3

)
, AA† = (

A1A
†
1

)(
A1A

†
1 − K3

)
.

We see that both types of reductions are distinct for the superpotential W2 unless K3 = 0.
One may check readily that Type I reduction allows factorization of ladder operator A in terms
of first-order operators A1, A2 as

A = A1A2 (follows from the identity: A
†
1A1 = A2A

†
2 + K3).

However, this is not possible for Type II reduction. But in both cases v± are in 1-SUSY
form, which is actually important. Their respective 1-SUSY partners may be written using
formula (6):

v(1)
+ = W 2

1 −
(

W1√
m

)′
+ K1, v

(2)
− = W 2

2 +
W ′

2√
m

− W2

(
1√
m

)′
− 1√

m

(
1√
m

)′′
+ K2.

(32)

According to standard SUSY, v
(1)
± and v

(2)
± are isospectral where v

(1)
− ≡ v− and v

(2)
+ ≡ v+ are

given by (20). Hence, we see that second-order SUSY formalism may give us opportunity
of studying two standard SUSY pairs

(
h

(j)
+ , h

(j)
−

)
simultaneously for j = 1, 2. The ground

states of both pairs of Hamiltonian are zero modes of first-order operators Aj,A
†
j given by

(28). These can be computed by substituting for W1,W2 from (29) and (31) (corresponding
to Type I and Type II reduction) into formulae (9) for W . For instance, the zero modes for the
operators Aj ,A

†
j , j = 1, 2, corresponding to Type II reduction, are

φ
+(1)
0 ∝ exp

(− ∫ x
F2(τ ) dτ

)
√
Wm

, φ
−(1)
0 = ψ−

0,2;

φ
−(2)
0 ∝ exp

(
+

∫ x
F2(τ ) dτ

)
√
Wm

, φ
+(2)
0 = ψ+

0,2,

(33)
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where ψ±
0,2 are given by (26) and φ

+(j)

0 , φ
−(j)

0 denote ground state wavefunctions for the

Hamiltonians h
(j)
+ , h

(j)
− for j = 1, 2 respectively.

Let us point out that for imaginary K3, given by (22), the above reduction is not possible
in Hermitian quantum mechanics [31], because both first-order superpotentials W1,W2 will be
complex (see equations (29) and (31)). In fact, this will lead us to an irreducible transformation
between the real and complex potentials for EM Hamiltonians [45].

The discussion in this section clearly shows that the factorization of a higher order linear
differential operator in terms of lower order operators is in general non-unique. That is to say,
one operator can admit both reducible and irreducible representations. Hence, from strictly
mathematical sense the concept of reducibility of HSUSY must be defined on the basis of
an additional restriction on Hamiltonians that they are factorizable according to (29) or (31).
In the next section, we will propose a higher order SI criterion for EM Hamiltonians. Our
purpose of introducing this section is to compare the result of SI obtained through HSUSY
with that obtained via first-order SUSY. This will give us a better insight about why and how
SI scheme proposed in this paper is an important generalization over the SI formalism in the
standard approach.

5. Higher order SI criteria for EM Hamiltonian

In [6] two types of SI criteria were discussed for EM Hamiltonian generated through first-order
SUSY let apart the generalized treatment proposed in [12]. Recently, a kind of deformed SI
criteria has been introduced [13], which is also in the context of standard SUSY. Searching for
SI Hamiltonian is useful, because this integrability condition leads to certain relation between
potential and mass functions producing an ES model. For instance, claiming first-order SUSY
partners V−(x; λ)−V+(x; λ) = 2λ, from equation (6), one obtains following relation between
first-order superpotential W(x) and mass m(x):

W(x) = 1

2

(
1√
m

)′
+ λ

∫ x √
m dτ.

Just this relation was discovered in [6]. Here, we wish to enquire this simple SI condition for
SSUSY partners (v+, v−), given by (20).

5.1. Theoretical construction

Let us consider

h−(x; λ) = h+(x; λ) + 2λ, λ > 0. (34)

It is not very difficult to see that the above requirement expresses second-order superpotential
in the form

Wm(x) = g(x)√
m(x)

, g(x) = γ + λ

∫ x √
m dτ, (35)

where γ is an integration constant. Substituting this expression for Wm(x) into (20) for v+(x),
we obtain following relation between potential and mass:

v+(x; λ) = g2

4
− λ2 − K2

3

4g2
+

m′′

4m2
− 7

16

m′2

m3
−

(
λ +

l1

2

)
, (36)

where we are considering K3 > 0.
We stress that this is a new relation between potential and mass which gives us a class

of SI Hamiltonian h+. The whole set
{
ψ+

n (x; λ),E+
n

}
of eigenstates and spectra for h+ can
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be constructed by exploiting the intertwining relation (23). The procedure is, as in the case
for harmonic oscillator, to apply successively the raising operator A† upon zero mode of the
lowering operatorA. Note that the second-order operatorA has two zero modes ψ+

0,j , j = 1, 2,
given by (26). Both these zero modes are formal solutions of Schrödinger equation for h+

(see equation (27)) with the eigenvalues η1 = (−l1 + K3)/2 and η2 = −(l1 + K3)/2, where
η1 > η2. Hence, we obtain double sequences of eigenstates based on both zero modes. The
labels of eigenstates will depend on the values of the SI parameter λ in equation (34). For
simplicity, let us first consider the case

λ > K3/2, K3 > 0. (37)

In this case, the wavefunctions and energy eigenvalues of h+(x; λ) may be expressed as
follows:

ψ+
2n(x; λ) = (A†)nψ+

0,2(x), E+
2n = η2 + 2nλ,

ψ+
2n+1(x; λ) = (A†)nψ+

0,1(x), E+
2n+1 = η1 + 2nλ,

}
, n = 0, 1, . . . . (38)

We will now turn to the case for λ � K3/2. Note that for all values of λ(>0), the ground
state will be given by the zero mode ψ+

0,2 with the eigenvalue η2. Higher excited states will be
obtained in a similar procedure as described above, but one has to relabel the states according
to the range of values of λ. To illustrate let us take the most general situation where

K3/2(κ + 1) < λ < K3/2κ, κ = 1, 2, . . . . (39)

Here, first κ members will be given by the sequence based on the zero mode ψ+
0,2. Thus, the

wavefunctions are

ψ+
n (x; λ) =


(A†)nψ+

0,2(x), n = 0, 1, . . . , κ

(A†)
n+κ

2 ψ+
0,2(x), n = κ + 2, κ + 4, . . .

(A†)
n−κ−1

2 ψ+
0,1(x), n = κ + 1, κ + 3, . . .

(40)

with the spectra

E+
n =


η2 + 2nλ, n = 0, 1, . . . , κ

η2 + (n + κ)λ, n = κ + 2, κ + 4, . . .

η1 + (n − κ − 1)λ, n = κ + 1, κ + 3, . . . .

(41)

It is a trivial exercise to verify that for λ = K3/2κ , the sequence built on ψ+
0,1 coincides with

that built on ψ+
0,2 except for the first κ members, which are the lowest states and only singular

solutions. The wavefunctions and spectra will be provided by single sequence:

λ = K3

2κ
: ψ+

n (x; λ) = (A†)nψ+
0,2(x), E+

n = η2 + n
K3

κ
, n = 0, 1, . . . .

(42)

It should also be kept in mind that for SSUSY scheme, zero modes of both operators A
and A† may simultaneously exist. This implies that the above sequences may terminate at
n = N(�1) if (A†)Nψ+

0,j ∝ ψ−
0,j ′ , j, j

′ = 1, 2, ψ−
0,j ′ being the possible zero modes of A†,

given by (26). Note that for λ = K3, we have from (38) harmonic-oscillator-like spectra

En = −
(

λ +
l1

2

)
+

(
n +

1

2

)
λ, n = 0, 1, . . . ,

while for λ �= K3 the spectra given by (38), (41) or (42) separately coincide with those of
singular oscillator.
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Under the SI condition (34), all levels can be obtained in a closed analytic form. For
instance, first three members of the sequence {(A†)nψ+

0,2(x)} are

ψ+
0,2(x) ∝ m1/4(x)[g(x)]

λ−K3
2λ exp

(
−g2(x)

4λ

)
, A†ψ+

0,2(x) ∝ [g2(x) + K3 − 2λ]ψ+
0,2(x),

(A†)2ψ+
0,2(x) ∝ [(g2(x) + K3 − 4λ)2 + 2λ(K3 − 4λ)]ψ+

0,2(x).


(43)

Higher members can be constructed in a similar fashion. The members of the other sequence{
(A†)nψ+

0,1(x)
}

can be obtained by simply changing the sign of K3 in the corresponding
members of the sequence

{
(A†)nψ+

0,2(x)
}
. The nature of the function g(x) given by (35) is

crucial for the normalizability of the wavefunctions. In the first place, m(x) must be so chosen
that it verifies g2(x) → +∞ as x → ±∞ and remains finite otherwise. Secondly, suppose
that g(x) is nodeless in the whole domain. Then the potential v+(x; λ) is non-singular and
both sequences provide regular (non-singular) solutions. But if g(x) has a node at x = x0 then
the potential is singular at that point for λ �= K3. Let us note that the node of g(x) is of first
order, because g′(x) = λ

√
m(x) is always nodeless for chosen mass function. Hence, near

x ∼ x0, v+(x) will behave like C(x − x0)
−2, where the constant C characterizes the strength

of the singularity. It is well known that self-adjoint extension of such Hamiltonian can be
determined on the whole domain for the range −1/4 < C < 3/4. The singularity will be
attractive or repulsive according as λ > K3 > 0 or 0 < λ < K3. One may readily check
from (43) that ψ+

0,2(x) is singular for λ < K3, and so in this case depending on the values of λ

and other parameters some or all of the members of the sequence
{
(A†)nψ+

0,2(x)
}

have to be
deleted from the set of regular solutions of h+(x; λ).

Hence, we have proved that the Hamiltonian h+(x; λ) with the potential v+(x; λ) in (36)
is a new ES model possessing second-order SI condition in the EM framework. Two remarks
are in order. As one lowers the value of λ by increasing the value of κ in (39), the levels
become closer and closer and in the limit λ → 0 (κ → ∞) only two levels will be left namely
ψ+

0,2(x) and ψ+
0,1(x) with the eigenvalues η2, η1, respectively. Clearly, this gives a quasi-

exactly solvable system with two known levels. Since in this paper we are only interested
about ES models, κ will be a finite quantity or equivalently the SI parameter λ is a strictly
non-zero finite positive number. Secondly, we have already mentioned that if the function
g(x) in (35) has a node at x = x0, the potential v+(x; λ) given by (36) will be singular at that
point. Hence, extreme care should be taken to decrease (or increase) the value of λ in order
to keep the strength C of the singularity controlled (−1/4 < C < 3/4), as for a given mass
function m(x) and the constant K3 the strength C is inversely proportional with λ. This will
be clear if one expands the function g(x) about its node x0 giving

C = (K3/λ)2 − 1

4m(x0)
. (44)

Next we are going to construct two classes of examples based on the theoretical model proposed
in this subsection, where this last comment will be crucial to get the physically acceptable
Hamiltonians.

5.2. Hyperbolic mass and potential

Let us choose the mass function as

m(x) = (α + β tanh x)2, β �= 0, |α| > |β|. (45)
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Figure 1. The effective mass (45) and potential function (47) with l1 = 5, β = γ = 1, λ = K3 = 4
that depicts harmonic-oscillator-like barrier. The graphs are drawn in the atomic units (au) defined
by h̄2 = 2 for four different values of the parameter α.
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Figure 2. Wavefunctions associated with ground and first two excited states and the SI potential
(47) corresponding to β = 0.9 and β = 0.001 while other parameters are α = γ = 1, λ = K3 = 4
(au are used).

This mass depicts a smooth step function. It increases (or decreases) from the value (α − β)2

for x = −∞ to the value (α + β)2 for x = +∞ according as αβ > 0 (or αβ < 0). From (35)
the function g(x) may be computed

g(x; λ) = γ + λ [αx + β ln cosh x] . (46)

The potential turns out to be

v+(x; λ) = g2

4
− λ2 − K2

3

4g2
−

(
λ +

l1

2

)
+

β sech2x[β tanh2 x − 4α tanh x − 5β]

4(α + β tanh x)4
. (47)

The nonsingular SI potential (47) and effective mass (45) are shown in figure 1 corresponding
to (i) β = γ = 1, l1 = 5, λ = K3 = 4 and (ii) four different values of the parameter
α. For all values of α (with the restriction |α| > |β|, β �= 0, which is necessary to have
nodeless nonconstant mass) we have a harmonic-oscillator-like well. As the magnitude of α

decreases the well becomes flatter. The constant-mass system will be recovered with β = 0,
and consequently the potential will reduce to harmonic oscillator for λ = K3. For very small
values of β, the wavefunctions tend to those associated with harmonic oscillator. In contrast,
for large values of β the wavefunctions tend to spread over the region whose size grows as
β increases due to the influence of step mass (45) in the potential profile. This behaviour
is demonstrated in figure 2, which contains the potential and wavefunctions associated with
ground and first two excited states corresponding to (i) α = γ = 1, λ = K3 = 4 and (ii)
β = 0.9, 0.001.
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Figure 3. Non-singular and singular (attractive) potential (47) along with probability-density
functions (in au) associated with ground and first two excited states corresponding to λ = 4 and
λ = 6 for l1 = 5,K3 = 4, α = 2, β = γ = 1.

The nature of the potential is dramatically changed for λ �= K3. As can be seen from (46)
that near x ∼ x0 the potential behaves like

v+(x; λ) ∼

C

(x − x0)2
,

where x = x0 is node of g(x) and the strength C of the singularity is to be computed
from formula (44). For the weakly attractive singularity (−1/4 < C < 0) the physical
wavefunctions tend to vanish at x → x0 according to the boundary conditions. This
behaviour is clearly appreciated from figure 3, where we have plotted singular and non-
singular potentials with their probability-density functions (|ψn(x)|2) associated with first
three lowest levels corresponding to (i) λ = 4 and (ii) λ = 6. The other constants are taken as
l1 = 5,K3 = 4, β = γ = 1, α = 2, which gives C = −0.04 and x0 = −0.09.

5.3. Algebraic mass and potential

As our second example, let us take the following mass function studied in [6]:

m(x) =
(

α + x2

1 + x2

)2

, α > 0, �= 1. (48)

This mass function remains strictly positive definite everywhere and approach a constant value
1 at both infinity. The SI potential is

v+(x; λ) = g2

4
− λ2 − K2

3

4g2
−

(
λ +

l1

2

)
+ (α − 1)

3x2 − 1

(α + x2)3
− 5(α − 1)2 x2

(α + x2)4
, (49)

where

g(x; λ) = γ + λ[x + (α − 1)tan−1x]. (50)

The non-singular potential is given by (49) for λ = K3. For 0 < α < 1, it is a bistable
potential and for α > 1 it is a single potential well, while α = 1 recovers the constant-mass
system giving harmonic oscillator well. Figure 4 describes non-singular potential (49) and
mass function (48) corresponding to (i) α = 0.3, 0.6 (first row) and (ii) α = 1, 10 (second
row). From this figure it is clear that for small values of α the height of separator between two
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λ = K3 = 4 corresponding to (i) α = 0.3, 0.6 (first row) and (ii) α = 1, 10 (second row).

x

v x n x 2 n 1,2,3

-2 -0.26 2

50

-2 -0.26 2

0.6
3

2

2
2

1
2

Figure 5. Singular (repulsive) potential (49) and the probability-density functions (in au)
corresponding to non-singular wavefunctions associated with first three excited levels for l1 = 5,

α = 2, γ = 1, λ = 2, K3 = 4.

wells grows producing a thin barrier. On the other hand, for very large values of α the single
well becomes sharper compare to that of standard harmonic oscillator well.

The potential acquires an inverse-square singularity for λ �= K3, which is repulsive
(attractive) for 0 < λ < K3 (λ > K3). For weakly repulsive singularity (0 < C < 3/4) the
regular (non-singular) wavefunctions are given by the sequence

{
(A†)nψ+

0,1(x)
}
. According

to the boundary conditions required to have self-adjoint extensions of the Hamiltonian,
these wavefunctions tend to vanish at x → x0, with x0 being node of the function g(x)

given by (50). This behaviour is depicted in figure 5, wherein we have plotted singular
potential along with probability-density functions associated with first three excited levels
of the sequence {ψn(x; λ)} given by (42) for λ = 2, other parameters being taken as
l1 = 5,K3 = 4, α = 2, γ = 1. These choice of parameters yields the strength C and
centre x0 of the singularity as C = 0.25, x0 = −0.26.
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Physically, the well confining the particle is divided into two zones by a high thin barrier
at x0 = −0.26. But note that for weakly repulsive case this barrier is penetrable by a
quantum-mechanical particle.

5.4. SI condition in reduced first-order SUSY

In subsection 5.1, we have proposed a second-order SI condition (34) and consequently have
obtained a new system of ES Hamiltonians h+(x; λ) where the potential v+(x; λ) and the mass
m(x) are related according to (36). Here, we wish to show that the same system (36) (up to a
constant shift) could be studied through first-order SI formalism provided the Hamiltonians are
factorizable according to (29) or (31). To see this, consider the 1-SUSY pair

(
v+ ≡ v

(2)
+ , v

(2)
−

)
given by (20) and (32) corresponding to Type II reduction (31). Here, the SI parameter will be
K3 instead of λ, while the other parameters have to be considered fixed. For convenience, in
the following we will use the symbol a0 for K3. The relation between first-order superpotential
W2(x; a0) and the mass function m(x) reads from (31) and (35)

W2(x; a0) = g(x)

2
− m′(x)

4m3/2(x)
+

a0 − λ

2g(x)
. (51)

To have zero-energy ground state, consider the Hamiltonian h̃
(2)
+ (x; a0) = h

(2)
+ (x; a0) −

K2(a0) = A
†
2(x; a0)A2(x; a0), where the operator A2 is given by (28) and K2(a0) =

−(a0 + l1)/2 for Type II reduction. Let us use the following abbreviations for the shifted
potentials:

ṽ(2)
+ (x; a0) = v(2)

+ (x; a0) − K2(a0), ṽ
(2)
− (x; a0) = v

(2)
− (x; a0) − K2(a0),

where φ+(2)
n (x; a0), ε

+(2)
n correspond wavefunctions and eigenvalues. Note that the

wavefunctions and energy eigenvalues of h+(x; λ), given by (18) and (36), are related with
{φ+(2)

n (x; a0), ε
+(2)
n } by

ψ+
n (x; λ) ∝ φ+(2)

n (x; a0), E+
n = ε+(2)

n + K2, n = 0, 1, . . .

where a0 ≡ K3. One then find from (51) following SI condition in the reduced first-order
SUSY:

ṽ
(2)
− (x; a0) = ṽ(2)

+ (x; a1) + R(a1), a1 = f (a0) = 2λ − a0, R(a1) = 2λ − a1. (52)

Thus, full spectra of h̃
(2)
+ (x; a0) can be recovered according to standard prescription

ε
+(2)
0 = 0, ε+(2)

n = ∑n
k=1 R(ak), ak = f (ak−1)

φ+(2)
n (x; a0) ∝ A

†
2(x; a0)A

†
2(x; a1) · · · A†

2(x; an−1)φ
+(2)
0 (x; an)

}
, n = 1, 2 . . .

where φ
+(2)
0 (x; a0) is zero mode of the operator A2(x; a0), given by (33). Two points are to

be noted. Firstly, imposing the restriction of factorizability on the Hamiltonians one would
come out with the SI condition (52) and relation (51), which have not been reported so far in
the literature for EM Hamiltonian. Secondly, the proposed SSUSY scheme definitely leads to
a generalized SI criterion (34), because in this case no such restrictions need to be imposed on
the Hamiltonians.
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Our final remark is that in the CM limit m → 1,4 both potentials v+(x; λ), given by (47)
and (49), reduce to known SI potential vCM

+ (x; λ):

vCM
+ (x; λ) = (γ + λx)2

4
− λ2 − K2

3

4(γ + λx)2
−

(
λ +

l1

2

)
, (53)

and the wavefunctions and energy eigenvalues exactly coincide with those [46, 47] for (53).

6. Conclusion

In this paper, we have used SSUSY scheme for describing dynamics of a quantum particle
with a position-dependent mass. We have derived a compact expression of 2-SUSY pairs
(v+, v−) in terms of second-order superpotential Wm(x) and the mass function m(x). A
detailed analysis has been given about zero-mode equations of second-order supercharges
and possible reduction of SSUSY scheme to first-order SUSY. Based on the existence of
intertwining relation between 2-SUSY partner Hamiltonians h±, we have obtained a new
relation between potential v+(x) and mass m(x) leading to a simple SI condition. As a result,
full spectra are achieved by successive application of second-order raising operator A† upon
the zero modes of the lowering operator A. It is shown that in the reduced first-order SUSY
approach one may obtain a new relation between first-order superpotential W2(x) and mass
m(x) and the same system (up to a constant shift) could possess a first-order SI property
provided the Hamiltonians are factorizable. The advantage of using SSUSY scheme is that it
deals with a generalized but simpler SI requirement, namely partner Hamiltonians differ by a
constant λ.

We have constructed explicit examples for two types of position dependence of mass
function, one is hyperbolic and the other is algebraic. The corresponding potentials have
very different aspects based on the values of the SI parameter λ. Both are non-singular for
λ = K3, where the constant K3 appears in the process of relating Schrödinger Hamiltonian
with super Hamiltonian. The parameters β and α characterize position dependence of mass
(45) and (48), respectively. The non-singular algebraic potential (49) shares same qualitative
features as those discovered in [6]. For λ �= K3, the potentials acquire an inverse-square
singularity, which is attractive (repulsive) for λ > K3 (λ < K3). The week strength of
singularity (−1/4 < C < 3/4) is particularly of physical interest. Because for weakly
attractive singularity (−1/4 < C < 0) the ground state energy remains finite. On the other
hand, for weakly repulsive singularity (0 < C < 3/4) the barrier is penetrable by quantum-
mechanical particle. In both instances, regular (non-singular) wavefunctions vanish at the
centre of the singularity.

It is important to clarify that the novelty of our work lies in the fact that we have
generalized for the first time the concept of SI to the second-order SUSY approach for EM
Hamiltonians. In this context, one should look into the explicit classification done in [16] via
N -fold SUSY approach to EM quantum systems. The systems investigated in this paper belong
to a special subclass of the systems studied there, which possess second-order shape invariance.
Hence, one has a significant advantage of obtaining wavefunctions and energy eigenvalues
for such Hamiltonians over the existing general method for arbitrary potential and mass
functions.

We would like to mention that in many practical applications, where continuous spectra is
of interest [1], SSUSY scheme used here may be utilized to relate transmission and reflection
amplitudes of partner Hamiltonians. The idea of SI condition for SSUSY scheme can be

4 m → 1 is taken to tally with the conventional choice of atomic units h̄2 = 2m = 1 for constant mass m.
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straightforwardly extended to general N th-order representation (N > 2) of ladder operators.
However, obtaining a physical model will be much more difficult, because one has to make
an appropriate choice of the mass function as well as of the coefficient functions in the ladder
operators. We hope to address some of these issues elsewhere.
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